Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 342
Filtrar
1.
Toxicol Lett ; 344: 34-45, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33667609

RESUMO

ASP7962 is a small molecule inhibitor for the nerve growth factor (NGF) receptor, tropomyosin-related kinase A (TrkA). NGF contributes to the survival of sensory and sympathetic neurons through TrkA receptor activation. Gross, microscopic, and quantitative effects to the nervous system were evaluated following oral ASP7962 administration to Sprague Dawley rats for 4 weeks and 13 weeks and after a recovery period. Histopathological findings included reversible neuronal atrophy but no neuronal death in the sympathetic ganglia (cervicothoracic ganglion, cranial mesenteric ganglion or superior [cranial] cervical ganglion). Stereological analysis showed reversible decreased ganglion volume and/or decreased neuron size in the superior (cranial) cervical ganglion in both the 4-week and the 13-week repeated dose studies. There were no test article related changes in the brain, dorsal root ganglia with spinal nerve roots or trigeminal ganglia and no functional deficits. ASP7962 did not cause any detectable dysfunction of the sympathetic and sensory nervous system in either study.


Assuntos
Neurônios Aferentes/efeitos dos fármacos , Receptor trkA/antagonistas & inibidores , Sistema Nervoso Simpático/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Esquema de Medicação , Feminino , Masculino , Neurônios/efeitos dos fármacos , Síndromes Neurotóxicas/metabolismo , Ratos , Ratos Sprague-Dawley , Gânglio Estrelado/citologia , Gânglio Estrelado/efeitos dos fármacos , Gânglio Cervical Superior/citologia , Gânglio Cervical Superior/efeitos dos fármacos , Gânglio Trigeminal/efeitos dos fármacos
2.
BMB Rep ; 54(6): 311-316, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33408002

RESUMO

Ethanol often causes critical health problems by altering the neuronal activities of the central and peripheral nerve systems. One of the cellular targets of ethanol is the plasma membrane proteins including ion channels and receptors. Recently, we reported that ethanol elevates membrane excitability in sympathetic neurons by inhibiting Kv7.2/7.3 channels in a cell type-specific manner. Even though our studies revealed that the inhibitory effects of ethanol on the Kv7.2/7.3 channel was diminished by the increase of plasma membrane phosphatidylinositol 4,5-bisphosphate (PI (4,5)P2), the molecular mechanism of ethanol on Kv7.2/7.3 channel inhibition remains unclear. By investigating the kinetics of Kv7.2/7.3 current in high K+ solution, we found that ethanol inhibited Kv7.2/7.3 channels through a mechanism distinct from that of tetraethylammonium (TEA) which enters into the pore and blocks the gate of the channels. Using a non-stationary noise analysis (NSNA), we demonstrated that the inhibitory effect of ethanol is the result of reduction of open probability (PO) of the Kv7.2/7.3 channel, but not of a single channel current (i) or channel number (N). Finally, ethanol selectively facilitated the kinetics of Kv7.2 current suppression by voltage-sensing phosphatase (VSP)-induced PI(4,5)P2 depletion, while it slowed down Kv7.2 current recovery from the VSP-induced inhibition. Together our results suggest that ethanol regulates neuronal activity through the reduction of open probability and PI(4,5)P2 sensitivity of Kv7.2/7.3 channels. [BMB Reports 2021; 54(6): 311-316].


Assuntos
Etanol/farmacologia , Ativação do Canal Iônico , Canal de Potássio KCNQ2/metabolismo , Canal de Potássio KCNQ3/metabolismo , Rim/fisiologia , Neurônios/fisiologia , Fosfatidilinositol 4,5-Difosfato/metabolismo , Animais , Depressores do Sistema Nervoso Central/farmacologia , Humanos , Rim/efeitos dos fármacos , Camundongos , Neurônios/efeitos dos fármacos , Gânglio Cervical Superior/efeitos dos fármacos , Gânglio Cervical Superior/fisiologia
3.
Int J Mol Sci ; 21(16)2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32806753

RESUMO

The ionic mechanisms controlling the resting membrane potential (RMP) in superior cervical ganglion (SCG) neurons have been widely studied and the M-current (IM, KCNQ) is one of the key players. Recently, with the discovery of the presence of functional TREK-2 (TWIK-related K+ channel 2) channels in SCG neurons, another potential main contributor for setting the value of the resting membrane potential has appeared. In the present work, we quantified the contribution of TREK-2 channels to the resting membrane potential at physiological temperature and studied its role in excitability using patch-clamp techniques. In the process we have discovered that TREK-2 channels are sensitive to the classic M-current blockers linopirdine and XE991 (IC50 = 0.310 ± 0.06 µM and 0.044 ± 0.013 µM, respectively). An increase from room temperature (23 °C) to physiological temperature (37 °C) enhanced both IM and TREK-2 currents. Likewise, inhibition of IM by tetraethylammonium (TEA) and TREK-2 current by XE991 depolarized the RMP at room and physiological temperatures. Temperature rise also enhanced adaptation in SCG neurons which was reduced due to TREK-2 and IM inhibition by XE991 application. In summary, TREK-2 and M currents contribute to the resting membrane potential and excitability at room and physiological temperature in the primary culture of mouse SCG neurons.


Assuntos
Canais de Potássio KCNQ/metabolismo , Potenciais da Membrana , Neurônios/fisiologia , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Sistema Nervoso Simpático/fisiologia , Temperatura , Adaptação Fisiológica/efeitos dos fármacos , Animais , Antracenos/farmacologia , Células HEK293 , Humanos , Indóis/farmacologia , Ativação do Canal Iônico/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Neurônios/efeitos dos fármacos , Piridinas/farmacologia , Riluzol/farmacologia , Gânglio Cervical Superior/efeitos dos fármacos , Gânglio Cervical Superior/fisiologia , Tetraetilamônio/farmacologia , Tetra-Hidronaftalenos/farmacologia , Tetrazóis/farmacologia
4.
Biol Res ; 53(1): 31, 2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32650839

RESUMO

BACKGROUND: In modern societies, sleep deprivation is a serious health problem. This problem could be induced by a variety of reasons, including lifestyle habits or neurological disorders. Chronic sleep deprivation (CSD) could have complex biological consequences, such as changes in neural autonomic control, increased oxidative stress, and inflammatory responses. The superior cervical ganglion (SCG) is an important sympathetic component of the autonomic nervous system. CSD can lead to a wide range of neurological consequences in SCG, which mainly supply innervations to circadian system and other structures. As the active component of Curcuma longa, curcumin possesses many therapeutic properties; including neuroprotective. This study aimed to evaluate the effect of CSD on the SCG histomorphometrical changes and the protective effect of curcumin in preventing these changes. METHODS: Thirty-six male rats were randomly assigned to the control, curcumin, CSD, CSD + curcumin, grid floor control, and grid floor + curcumin groups. The CSD was induced by a modified multiple platform apparatus for 21 days and animals were sacrificed at the end of CSD or treatment, and their SCGs removed for stereological and TUNEL evaluations and also spatial arrangement of neurons in this structure. RESULTS: Concerning stereological findings, CSD significantly reduced the volume of SCG and its total number of neurons and satellite glial cells in comparison with the control animals (P < 0.05). Treatment of CSD with curcumin prevented these decreases. Furthermore, TUNEL evaluation showed significant apoptosis in the SCG cells in the CSD group, and treatment with curcumin significantly decreased this apoptosis (P < 0.01). This decrease in apoptosis was observed in all control groups that received curcumin. CSD also changed the spatial arrangement of ganglionic neurons into a random pattern, whereas treatment with curcumin preserved its regular pattern. CONCLUSIONS: CSD could potentially induce neuronal loss and structural changes including random spatial distribution in the SCG neurons. Deleterious effects of sleep deprivation could be prevented by the oral administration of curcumin. Furthermore, the consumption of curcumin in a healthy person might lead to a reduction of cell death.


Assuntos
Anti-Inflamatórios não Esteroides , Curcumina , Privação do Sono , Gânglio Cervical Superior , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Curcumina/farmacologia , Masculino , Ratos , Ratos Sprague-Dawley , Privação do Sono/tratamento farmacológico , Privação do Sono/patologia , Gânglio Cervical Superior/efeitos dos fármacos
5.
Int J Mol Sci ; 21(2)2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31936257

RESUMO

Bradykinin (BK), a hormone inducing pain and inflammation, is known to inhibit potassium M-currents (IM) and to increase the excitability of the superior cervical ganglion (SCG) neurons by activating the Ca2+-calmodulin pathway. M-current is also reduced by muscarinic agonists through the depletion of membrane phosphatidylinositol 4,5-biphosphate (PIP2). Similarly, the activation of muscarinic receptors inhibits the current through two-pore domain potassium channels (K2P) of the "Tandem of pore-domains in a Weakly Inward rectifying K+ channel (TWIK)-related channels" (TREK) subfamily by reducing PIP2 in mouse SCG neurons (mSCG). The aim of this work was to test and characterize the modulation of TREK channels by bradykinin. We used the perforated-patch technique to investigate riluzole (RIL) activated currents in voltage- and current-clamp experiments. RIL is a drug used in the palliative treatment of amyotrophic lateral sclerosis and, in addition to blocking voltage-dependent sodium channels, it also selectively activates the K2P channels of the TREK subfamily. A cell-attached patch-clamp was also used to investigate TREK-2 single channel currents. We report here that BK reduces spike frequency adaptation (SFA), inhibits the riluzole-activated current (IRIL), which flows mainly through TREK-2 channels, by about 45%, and reduces the open probability of identified single TREK-2 channels in cultured mSCG cells. The effect of BK on IRIL was precluded by the bradykinin receptor (B2R) antagonist HOE-140 (d-Arg-[Hyp3, Thi5, d-Tic7, Oic8]BK) but also by diC8PIP2 which prevents PIP2 depletion when phospholipase C (PLC) is activated. On the contrary, antagonizing inositol triphosphate receptors (IP3R) using 2-aminoethoxydiphenylborane (2-APB) or inhibiting protein kinase C (PKC) with bisindolylmaleimide did not affect the inhibition of IRIL by BK. In conclusion, bradykinin inhibits TREK-2 channels through the activation of B2Rs resulting in PIP2 depletion, much like we have demonstrated for muscarinic agonists. This mechanism implies that TREK channels must be relevant for the capture of information about pain and visceral inflammation.


Assuntos
Bradicinina/metabolismo , Neurônios/efeitos dos fármacos , Fosfatidilinositol 4,5-Difosfato/metabolismo , Canais de Potássio de Domínios Poros em Tandem/genética , Sistema Nervoso Simpático/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Animais , Bradicinina/administração & dosagem , Bradicinina/análogos & derivados , Bradicinina/genética , Bradicinina/farmacologia , Células Cultivadas , Humanos , Camundongos , Agonistas Muscarínicos/farmacologia , Neurônios/patologia , Técnicas de Patch-Clamp , Fosfatidilinositol 4,5-Difosfato/genética , Potássio/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Receptores Muscarínicos/genética , Riluzol/farmacologia , Bloqueadores dos Canais de Sódio/farmacologia , Gânglio Cervical Superior/efeitos dos fármacos , Sistema Nervoso Simpático/metabolismo , Fosfolipases Tipo C
6.
Circ Res ; 126(6): 708-721, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-31928179

RESUMO

RATIONALE: Effector memory T lymphocytes (TEM cells) exacerbate hypertension in response to repeated hypertensive stimuli. These cells reside in the bone marrow for prolonged periods and can be reactivated on reexposure to the hypertensive stimulus. OBJECTIVE: Because hypertension is associated with increased sympathetic outflow to the bone marrow, we hypothesized that sympathetic nerves regulate accumulation and reactivation of bone marrow-residing hypertension-specific TEM cells. METHODS AND RESULTS: Using unilateral superior cervical ganglionectomy in wild-type C57BL/6 mice, we showed that sympathetic nerves create a bone marrow environment that supports residence of hypertension-specific CD8+ T cells. These cells, defined by their proliferative response on coculture with dendritic cells from Ang (angiotensin) II-infused mice, were reduced in denervated compared with innervated bone of Ang II-infused mice. Adoptively transferred CD8+ T cells from Ang II-infused mice preferentially homed to innervated compared with denervated bone. In contrast, ovalbumin responsive T cells from OT-I mice did not exhibit this preferential homing. Increasing superior cervical ganglion activity by activating Gq-coupled designer receptor exclusively activated by designer drug augmented CD8+ TEM bone marrow accumulation. Adoptive transfer studies using mice lacking ß2AR (ß2 adrenergic receptors) indicate that ß2AR in the bone marrow niche, rather than T-cell ß2AR is critical for TEM cell homing. Inhibition of global sympathetic outflow using Gi-coupled DREADD (designer receptor exclusively activated by designer drug) injected into the rostral ventrolateral medulla or treatment with a ß2AR antagonist reduced hypertension-specific CD8+ TEM cells in the bone marrow and reduced the hypertensive response to a subsequent response to low dose Ang II. CONCLUSIONS: Sympathetic nerves contribute to the homing and survival of hypertension-specific TEM cells in the bone marrow after they are formed in hypertension. Inhibition of sympathetic nerve activity and ß2AR blockade reduces these cells and prevents the blood pressure elevation and renal inflammation on reexposure to hypertension stimuli.


Assuntos
Medula Óssea/inervação , Linfócitos T CD8-Positivos/fisiologia , Movimento Celular , Hipertensão/fisiopatologia , Gânglio Cervical Superior/fisiopatologia , Transferência Adotiva , Antagonistas de Receptores Adrenérgicos beta 2/farmacologia , Angiotensina II/farmacologia , Animais , Medula Óssea/imunologia , Linfócitos T CD8-Positivos/imunologia , Denervação , Hipertensão/imunologia , Bulbo/efeitos dos fármacos , Bulbo/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Receptores Adrenérgicos beta 2/metabolismo , Gânglio Cervical Superior/efeitos dos fármacos
7.
Biol. Res ; 53: 31, 2020. graf
Artigo em Inglês | LILACS | ID: biblio-1124214

RESUMO

BACKGROUND: In modern societies, sleep deprivation is a serious health problem. This problem could be induced by a variety of reasons, including lifestyle habits or neurological disorders. Chronic sleep deprivation (CSD) could have complex biological consequences, such as changes in neural autonomic control, increased oxidative stress, and inflammatory responses. The superior cervical ganglion (SCG) is an important sympathetic component of the autonomic nervous system. CSD can lead to a wide range of neurological consequences in SCG, which mainly supply innervations to circadian system and other structures. As the active component of Curcuma longa, curcumin possesses many therapeutic properties; including neuroprotective. This study aimed to evaluate the effect of CSD on the SCG histomorphometrical changes and the protective effect of curcumin in preventing these changes. METHODS: Thirty-six male rats were randomly assigned to the control, curcumin, CSD, CSD + curcumin, grid floor control, and grid floor + curcumin groups. The CSD was induced by a modified multiple platform apparatus for 21 days and animals were sacrificed at the end of CSD or treatment, and their SCGs removed for stereological and TUNEL evaluations and also spatial arrangement of neurons in this structure. RESULTS: Concerning stereological findings, CSD significantly reduced the volume of SCG and its total number of neurons and satellite glial cells in comparison with the control animals ( P < 0.05). Treatment of CSD with curcumin prevented these decreases. Furthermore, TUNEL evaluation showed significant apoptosis in the SCG cells in the CSD group, and treatment with curcumin significantly decreased this apoptosis ( P < 0.01). This decrease in apoptosis was observed in all control groups that received curcumin. CSD also changed the spatial arrangement of ganglionic neurons into a random pattern, whereas treatment with curcumin preserved its regular pattern. CONCLUSIONS: CSD could potentially induce neuronal loss and structural changes including random spatial distribution in the SCG neurons. Deleterious effects of sleep deprivation could be prevented by the oral administration of curcumin. Furthermore, the consumption of curcumin in a healthy person might lead to a reduction of cell death.


Assuntos
Animais , Masculino , Ratos , Privação do Sono/patologia , Privação do Sono/tratamento farmacológico , Anti-Inflamatórios não Esteroides/farmacologia , Gânglio Cervical Superior/efeitos dos fármacos , Curcumina/farmacologia , Ratos Sprague-Dawley
8.
Auton Neurosci ; 219: 33-41, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31122599

RESUMO

Chronic lead exposure frequently brings about increased blood pressure and other cardiovascular diseases associated with autonomic nervous dysfunction. Purinergic signaling is involved in the development of abnormal sympathoexcitatory response due to myocardial ischemic injury. However, the potential implication of P2X7 receptor in altered sympathoexcitatory response caused by chronic lead exposure and the underlying mechanisms remain unclear. In this study, a rat model of chronic lead exposure was used to explore the changes in sympathoexcitatory response and possible involvement of P2X7 receptor in the superior cervical ganglion (SCG). Rats were divided into three groups called control, low lead and high lead groups according to daily lead exposure levels, i.e. 0, 0.5 and 2 g/L respectively. One year later, changes in P2X7 receptor expression in SCG, sympathetic nerve activity and myocardial function were measured for these rats. Our results showed that increased blood pressure and heart rate, decreased heart rate variability, enhanced cervical sympathetic nerve discharge, higher phosphorylation of ERK1/2, and up-regulated protein and mRNA levels of P2X7 expression in SCG occurred after lead exposure. In addition, double-label immunofluorescence staining of P2X7 receptor and glutamine synthetase (GS) revealed activation of the satellite glial cells of SCG by lead exposure. Moreover, knockdown of P2X7 could effectively relief the effect of lead exposure on enhanced expression of P2X7 receptor and GS. Thus our data suggest that the up-regulation of P2X7 receptor activity in satellite glial cells of SCG may contribute to the raised sympathoexcitatory response due to chronic lead exposure.


Assuntos
Chumbo/efeitos adversos , Receptores Purinérgicos P2X7/metabolismo , Gânglio Cervical Superior/efeitos dos fármacos , Gânglio Cervical Superior/metabolismo , Animais , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Relação Dose-Resposta a Droga , Feminino , Frequência Cardíaca/efeitos dos fármacos , Frequência Cardíaca/fisiologia , Chumbo/sangue , Masculino , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal , RNA Mensageiro/metabolismo , Distribuição Aleatória , Ratos Sprague-Dawley
9.
Pharmacol Res Perspect ; 7(3): e00471, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31065376

RESUMO

Metabotropic glutamate receptors (mGluRs) are class C G protein coupled receptors with widespread expression in the central nervous system. There are eight mGluRs in the mammalian genome. Research on mGluRs relies on the availability of selective compounds. While many selective allosteric compounds have been described, selectivity of orthosteric agonists and antagonists has been more difficult due to the similarity of the glutamate binding pocket across the mGluR family. LY341495 has been used for decades as a potent and selective group II mGluR antagonist. The selectivity of LY341495 was investigated here between mGluR2, a group II mGluR, and mGluR4, a group III receptor, heterologously expressed in adult rat sympathetic neurons from the superior cervical ganglion (SCG), which provides a null-mGluR background upon which mGluRs were examined in isolation. The compound does in fact selectively inhibit mGluR2 over mGluR4, but in such a way that it makes signaling of the two receptors more difficult to distinguish. The glutamate potency of mGluR2 is about 10-fold higher than mGluR4. 50 nmol L-1 LY341495 did not alter mGluR4 signaling but shifted the mGluR2 glutamate dose-response about 10-fold, such that it overlapped more closely with that of mGluR4. Increasing the LY341494 dose to 500 nmol L-1 further shifted the glutamate dose-response of mGluR2 by another ~10-fold, but also shifted that of mGluR4 similarly. Thus, while glutamate is a moderately selective agonist of mGluR2 over mGluR4 when applied alone, in the presence of increasing concentrations of LY341495, this selectivity of glutamate is lost.


Assuntos
Aminoácidos/farmacologia , Receptores de Glutamato Metabotrópico/metabolismo , Gânglio Cervical Superior/metabolismo , Xantenos/farmacologia , Animais , Relação Dose-Resposta a Droga , Regulação para Baixo , Gânglios Simpáticos/citologia , Gânglios Simpáticos/efeitos dos fármacos , Gânglios Simpáticos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Ratos , Receptores de Glutamato Metabotrópico/genética , Transdução de Sinais/efeitos dos fármacos , Gânglio Cervical Superior/citologia , Gânglio Cervical Superior/efeitos dos fármacos
10.
Physiol Rep ; 7(6): e14023, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30891952

RESUMO

Our previous immunoprecipitation analysis of nicotinic acetylcholine receptors (nAChRs) in the mouse superior cervical ganglion (SCG) revealed that approximately 55%, 24%, and 21% of receptors are comprised of α3ß4, α3ß4α5, and α3ß4ß2 subunits, respectively. Moreover, mice lacking ß4 subunits do not express α5-containing receptors but still express a small number of α3ß2 receptors. Here, we investigated how synaptic transmission is affected in the SCG of α5ß4-KO and α5ß2-KO mice. Using an ex vivo SCG preparation, we stimulated the preganglionic cervical sympathetic trunk and measured compound action potentials (CAPs) in the postganglionic internal carotid nerve. We found that CAP amplitude was unaffected in α5ß4-KO and α5ß2-KO ganglia, whereas the stimulation threshold for eliciting CAPs was significantly higher in α5ß4-KO ganglia. Moreover, intracellular recordings in SCG neurons revealed no difference in EPSP amplitude. We also found that the ganglionic blocking agent hexamethonium was the most potent in α5ß4-KO ganglia (IC50 : 22.1 µmol/L), followed by α5ß2-KO (IC50 : 126.7 µmol/L) and WT ganglia (IC50 : 389.2 µmol/L). Based on these data, we estimated an IC50 of 568.6 µmol/L for a receptor population consisting solely of α3ß4α5 receptors; and we estimated that α3ß4α5 receptors comprise 72% of nAChRs expressed in the mouse SCG. Similarly, by measuring the effects of hexamethonium on ACh-induced currents in cultured SCG neurons, we found that α3ß4α5 receptors comprise 63% of nAChRs. Thus, in contrast to our results obtained using immunoprecipitation, these data indicate that the majority of receptors at the cell surface of SCG neurons consist of α3ß4α5.


Assuntos
Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Receptores Nicotínicos/metabolismo , Gânglio Cervical Superior/metabolismo , Transmissão Sináptica , Animais , Células Cultivadas , Bloqueadores Ganglionares/farmacologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Neurônios/efeitos dos fármacos , Antagonistas Nicotínicos/farmacologia , Receptores Nicotínicos/deficiência , Receptores Nicotínicos/genética , Gânglio Cervical Superior/efeitos dos fármacos , Potenciais Sinápticos , Transmissão Sináptica/efeitos dos fármacos
11.
Auton Neurosci ; 216: 25-32, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30206032

RESUMO

Sympathetic neurons of SCG are dependent on availability of nerve growth factor (NGF) for their survival. SCG neurons express nicotinic receptors (nAChR) whose expression levels are modulated by nicotine. Nicotine exerts multiple effects on neurons, including neuroprotection, through nAChR binding. Although sympathetic neurons express robust levels of nAChR, a possible neuroprotective role for nicotine in these neurons is not well-understood. Therefore we determined the effect of nicotine exposure on survival of SCG neurons during NGF withdrawal in a well-established cell culture system. NGF was withdrawn in rat neonatal SCG neuron cultures which were then treated with either 10 µM nicotine alone or with nAChR antagonists 0.1 µM α-bungarotoxin (antagonist for α7 subunit bearing nAChR) and 10 µM mecamylamine (non-specific antagonist for ganglionic nAChR) for 48 h. Apoptotic death was determined by TUNEL staining. Cell survival was also determined by MTS assay. Western blot analysis of ERK1/2 was also performed. Our results showed that exposure to 10 µM nicotine significantly reduced apoptotic cell death in SCG neurons resulting from NGF withdrawal as shown by fewer TUNEL positive cells. The MTS assay results also revealed that 10 µM nicotine concentration significantly increased cell survival thus indicating neuroprotective effect of nicotine against cell death resulting from NGF withdrawal. Nicotinic receptor antagonists (bungarotoxin & mecamylamine) attenuated the effect of nicotine's action of neuroprotection. Western blot analysis showed an increased expression of ERK1/2 in nicotine treated cultures suggesting nicotine provided neuroprotection in SCG neurons by increasing the expression of ERK1/2 through nicotinic receptor dependent mechanisms.


Assuntos
Neurônios/efeitos dos fármacos , Neuroproteção/efeitos dos fármacos , Nicotina/farmacologia , Gânglio Cervical Superior/citologia , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Bungarotoxinas/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Mecamilamina/farmacologia , Proteína Quinase 1 Ativada por Mitógeno/biossíntese , Proteína Quinase 3 Ativada por Mitógeno/biossíntese , Fator de Crescimento Neural/deficiência , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Ratos , Gânglio Cervical Superior/efeitos dos fármacos
12.
Neurosci Lett ; 671: 19-24, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29391220

RESUMO

Satellite glial cells (SGCs) surround the neurons in sympathetic ganglia and are believed to make important contributions to the function of the ganglia under normal and pathological conditions. It has been proposed that SGCs communicate chemically with the neurons, but little is known about their pharmacological properties and there is no information on whether they respond to acetylcholine (ACh), which is the major neurotransmitter in these ganglia. We used calcium imaging to examine responses of SGCs in the mouse superior cervical ganglion to ACh. The SGCs responded to ACh (0.01-2 mM) with an elevation of intracellular Ca2+, which appeared to be due to direct action on these cells, as the response persisted in the presence of the nerve blocker tetrodotoxin (1 µM). The response was largely inhibited by atropine, indicating an action on muscarinic ACh receptors. In contrast to this, sensory ganglia (nodose and trigeminal) were not sensitive to ACh. Incubation of the ganglia in ACh (0.5 or 1 mM) increased the expression of glial fibrillay acidic protein, which is a marker for glial activation. Such incubation also increased the electrical coupling of SGCs, which is known to occur in sensory ganglia following injury. We conclude that SGCs in the superior cervical ganglia display muscarinic ACh receptors, which enable them to communicate chemically with the sympathetic neurons.


Assuntos
Acetilcolina/farmacologia , Colinérgicos/farmacologia , Células Satélites Perineuronais/efeitos dos fármacos , Gânglio Cervical Superior/efeitos dos fármacos , Animais , Atropina/farmacologia , Cálcio/metabolismo , Camundongos , Antagonistas Muscarínicos/farmacologia , Células Satélites Perineuronais/metabolismo , Bloqueadores dos Canais de Sódio/farmacologia , Gânglio Cervical Superior/metabolismo , Tetrodotoxina/farmacologia
13.
J Pharmacol Toxicol Methods ; 88(Pt 1): 64-71, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28658603

RESUMO

The purpose of this study was to evaluate functional measures of diminished sympathetic activity after postganglionic neuronal loss in the conscious rat. To produce variable degrees of sympathetic postganglionic neuronal loss, adult rats were treated daily with toxic doses of guanethidine (100mg/kg) for either 5days or 11days, followed by a recovery period of at least 18days. Heart rate, blood pressure, cardiac baroreflex responsiveness, urinalysis (for catecholamine metabolite, 3-methoxy-4-hydroxyphenylethylenglycol; MHPG), and pupillometry were performed during the recovery period. At the end of the recovery period stereology of superior cervical ganglia (SCG) was performed to determine the degree of neuronal loss. Total number of SCG neurons was correlated to physiological outcomes using regression analysis. Whereas guanethidine treatment for 11days caused significant reduction in the number of neurons (15,646±1460 vs. 31,958±1588), guanethidine treatment for 5days caused variable levels of neuronal depletion (26,009±3518). Regression analysis showed that only changes in urinary MHPG levels and systolic blood pressure significantly correlated with reduction of SCG neurons (r2=0.45 and 0.19, both p<0.05). Although cardiac baroreflex-induced reflex tachycardia (345.7±19.6 vs. 449.7±20.3) and pupil/iris ratio (0.50±0.03% vs. 0.61±0.02%) were significantly attenuated in the 11-day guanethidine treated rats there was no significant relationship between these measurements and the number of remaining SCG neurons after treatment (p>0.05). These data suggest that basal systolic blood pressure and urinary MHPG levels predict drug-induced depletion of sympathetic activity in vivo.


Assuntos
Guanetidina/toxicidade , Neurônios/efeitos dos fármacos , Gânglio Cervical Superior/efeitos dos fármacos , Simpatolíticos/toxicidade , Testes de Toxicidade Aguda/métodos , Animais , Barorreflexo/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Catecolaminas/metabolismo , Estado de Consciência , Frequência Cardíaca/efeitos dos fármacos , Masculino , Metoxi-Hidroxifenilglicol/urina , Ratos , Ratos Sprague-Dawley
14.
Exp Neurol ; 296: 1-15, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28645526

RESUMO

Neuropathy is a major diabetic complication. While the mechanism of this neuropathy is not well understood, it is believed to result in part from deficient nerve regeneration. Work from our laboratory established that gp130 family of cytokines are induced in animals after axonal injury and are involved in the induction of regeneration-associated genes (RAGs) and in the conditioning lesion response. Here, we examine whether a reduction of cytokine signaling occurs in diabetes. Streptozotocin (STZ) was used to destroy pancreatic ß cells, leading to chronic hyperglycemia. Mice were injected with either low doses of STZ (5×60mg/kg) or a single high dose (1×200mg/kg) and examined after three or one month, respectively. Both low and high dose STZ treatment resulted in sustained hyperglycemia and functional deficits associated with the presence of both sensory and autonomic neuropathy. Diabetic mice displayed significantly reduced intraepidermal nerve fiber density and sudomotor function. Furthermore, low and high dose diabetic mice showed significantly reduced tactile touch sensation measured with Von Frey monofilaments. To look at the regenerative and injury-induced responses in diabetic mice, neurons in both superior cervical ganglia (SCG) and the 4th and 5th lumbar dorsal root ganglia (DRG) were unilaterally axotomized. Both high and low dose diabetic mice displayed significantly less axonal regeneration in the sciatic nerve, when measured in vivo, 48h after crush injury. Significantly reduced induction of two gp130 cytokines, leukemia inhibitory factor and interleukin-6, occurred in diabetic animals in SCG 6h after injury compared to controls. Injury-induced expression of interleukin-6 was also found to be significantly reduced in the DRG at 6h after injury in low and high dose diabetic mice. These effects were accompanied by reduced phosphorylation of signal transducer and activator of transcription 3 (STAT3), a downstream effector of the gp130 signaling pathway. We also found decreased induction of several gp130-dependent RAGs, including galanin and vasoactive intestinal peptide. Together, these data suggest a novel mechanism for the decreased response of diabetic sympathetic and sensory neurons to injury.


Assuntos
Receptor gp130 de Citocina/metabolismo , Diabetes Mellitus Experimental/patologia , Regulação da Expressão Gênica/fisiologia , Degeneração Neural/etiologia , Transdução de Sinais/fisiologia , Gânglio Cervical Superior/metabolismo , Animais , Antibióticos Antineoplásicos/toxicidade , Glicemia/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Receptor gp130 de Citocina/genética , Citocinas/metabolismo , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/complicações , Modelos Animais de Doenças , Jejum/sangue , Hiperalgesia/etiologia , Hiperglicemia/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Degeneração Neural/patologia , Proteínas do Tecido Nervoso/metabolismo , Medição da Dor , Transdução de Sinais/efeitos dos fármacos , Estreptozocina/toxicidade , Gânglio Cervical Superior/efeitos dos fármacos , Sudorese/efeitos dos fármacos
15.
Matrix Biol ; 60-61: 176-189, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-27641621

RESUMO

Spinal cord and peripheral nerve injuries require the regeneration of nerve fibers across the lesion site for successful recovery. Providing guidance cues and soluble factors to promote neurite outgrowth and cell survival can enhance repair. The extracellular matrix (ECM) plays a key role in tissue repair by controlling cell adhesion, motility, and growth. In this study, we explored the ability of a mesenchymal ECM to support neurite outgrowth from neurons in the superior cervical ganglia (SCG). Length and morphology of neurites extended on a decellularized fibroblast ECM were compared to those on substrates coated with laminin, a major ECM protein in neural tissue, or fibronectin, the main component of a mesenchymal ECM. Average radial neurite extension was equivalent on laminin and on the decellularized ECM, but contrasted with the shorter, curved neurites observed on the fibronectin substrate. Differences between neurites on fibronectin and on other substrates were confirmed by fast Fourier transform analyses. To control the direction of neurite outgrowth, we developed an ECM with linearly aligned fibril organization by orienting the fibroblasts that deposit the matrix on a polymeric surface micropatterned with a striped chemical interface. Neurites projected from SCGs appeared to reorient in the direction of the pattern. These results highlight the ability of a mesenchymal ECM to enhance neurite extension and to control the directional outgrowth of neurites. This micropatterned decellularized ECM architecture has potential as a regenerative microenvironment for nerve repair.


Assuntos
Matriz Extracelular/química , Fibroblastos/química , Regeneração Nervosa/fisiologia , Gânglio Cervical Superior/citologia , Engenharia Tecidual/métodos , Animais , Proliferação de Células , Embrião de Mamíferos , Fibronectinas/química , Fibronectinas/farmacologia , Análise de Fourier , Laminina/química , Laminina/farmacologia , Células-Tronco Mesenquimais/química , Camundongos , Células NIH 3T3 , Neuritos/metabolismo , Neuritos/ultraestrutura , Células PC12 , Polietilenotereftalatos/química , Ratos , Ratos Sprague-Dawley , Gânglio Cervical Superior/efeitos dos fármacos , Gânglio Cervical Superior/crescimento & desenvolvimento , Gânglio Cervical Superior/metabolismo , Propriedades de Superfície
16.
Neuropharmacology ; 110(Pt A): 493-502, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27553120

RESUMO

Though amyloid precursor protein (APP) can potentially be cleaved to generate the pathological amyloid ß peptide (Aß), APP itself plays an important role in regulating neuronal activity. APP deficiency causes functional impairment in cholinergic synaptic transmission and cognitive performance. However, the mechanisms underlying altered cholinergic synaptic transmission in APP knock-out mice (APP(-/-)) are poorly understood. In this study, we conducted in vivo extracellular recording to investigate cholinergic compound action potentials (CAPs) of the superior cervical ganglion (SCG) in APP(-/-) and littermate wild-type (WT) mice. Our results demonstrate that APP not only regulates presynaptic activity, but also affects postsynaptic function at cholinergic synapses in SCG. APP deficiency reduces the number of vesicles in presynaptic terminalsand attenuatesthe amplitude of CAPs, likely due to dysfunction of high-affinity choline transporters. Pharmacological and biochemical examination showed that postsynaptic responsesmediated by α4ß2 and α7 nicotinic acetylcholine receptors are reduced in the absence of APP. Our research provides evidences on how APP regulates cholinergic function and therefore may help to identify potential therapeutic targets to treat cholinergic dysfunction associated with Alzheimer's disease pathogenesis.


Assuntos
Precursor de Proteína beta-Amiloide/deficiência , Receptores Nicotínicos/metabolismo , Gânglio Cervical Superior/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Acetilcolina/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Colinérgicos/farmacologia , Anormalidades do Olho/metabolismo , Anormalidades do Olho/patologia , Camundongos Knockout , Gânglio Cervical Superior/efeitos dos fármacos , Gânglio Cervical Superior/patologia , Sinapses/patologia , Transmissão Sináptica/efeitos dos fármacos
17.
Mol Pain ; 122016.
Artigo em Inglês | MEDLINE | ID: mdl-27385723

RESUMO

Patients with intermittent claudication suffer from both muscle pain and an exacerbated exercise pressor reflex. Excitability of the group III and group IV afferent fibers mediating these functions is controlled in part by voltage-dependent sodium (NaV) channels. We previously found tetrodotoxin-resistant NaV1.8 channels to be the primary type in muscle afferent somata. However, action potentials in group III and IV afferent axons are blocked by TTX, supporting a minimal role of NaV1.8 channels. To address these apparent differences in NaV channel expression between axon and soma, we used immunohistochemistry to identify the NaV channels expressed in group IV axons within the gastrocnemius muscle and the dorsal root ganglia sections. Positive labeling by an antibody against the neurofilament protein peripherin was used to identify group IV neurons and axons. We show that >67% of group IV fibers express NaV1.8, NaV1.6, or NaV1.7. Interestingly, expression of NaV1.8 channels in group IV somata was significantly higher than in the fibers, whereas there were no significant differences for either NaV1.6 or NaV1.7. When combined with previous work, our results suggest that NaV1.8 channels are expressed in most group IV axons, but that, under normal conditions, NaV1.6 and/or NaV1.7 play a more important role in action potential generation to signal muscle pain and the exercise pressor reflex.


Assuntos
Neurônios Aferentes/metabolismo , Células Receptoras Sensoriais/metabolismo , Canais de Sódio Disparados por Voltagem/metabolismo , Animais , Anticorpos/metabolismo , Axônios/efeitos dos fármacos , Axônios/metabolismo , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Masculino , Músculos/efeitos dos fármacos , Músculos/metabolismo , Neurônios Aferentes/efeitos dos fármacos , Ratos Sprague-Dawley , Células Receptoras Sensoriais/efeitos dos fármacos , Gânglio Cervical Superior/efeitos dos fármacos , Gânglio Cervical Superior/metabolismo , Tetrodotoxina/farmacologia
18.
Toxicol Appl Pharmacol ; 305: 75-82, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27260673

RESUMO

The abuse of ketamine and amphetamine analogs is associated with incidence of hypertension and strokes involving activation of sympathetic activities. Large cerebral arteries at the base of the brain from several species receive dense sympathetic innervation which upon activation causes parasympathetic-nitrergic vasodilation with increased regional blood flow via axo-axonal interaction mechanism, serving as a protective mechanism to meet O2 demand in an acutely stressful situation. The present study was designed to examine effects of ketamine and amphetamine analogs on axo-axonal interaction-mediated neurogenic nitrergic vasodilation in porcine basilar arteries using techniques of blood-vessel myography, patch clamp and two-electrode voltage clamp, and calcium imaging. In U46619-contracted basilar arterial rings, nicotine (100µM) and electrical depolarization of nitrergic nerves by transmural nerve stimulation (TNS, 8Hz) elicited neurogenic nitrergic vasodilations. Ketamine and amphetamine analogs concentration-dependently inhibited nicotine-induced parasympathetic-nitrergic vasodilation without affecting that induced by TNS, nitroprusside or isoproterenol. Ketamine and amphetamine analogs also concentration-dependently blocked nicotine-induced inward currents in Xenopus oocytes expressing α3ß2-nicotinic acetylcholine receptors (nAChRs), and nicotine-induced inward currents as well as calcium influxes in rat superior cervical ganglion neurons. The potency in inhibiting both inward-currents and calcium influxes is ketamine>methamphetamine>hydroxyamphetamine. These results indicate that ketamine and amphetamine analogs, by blocking nAChRs located on cerebral perivascular sympathetic nerves, reduce nicotine-induced, axo-axonal interaction mechanism-mediated neurogenic dilation of the basilar arteries. Chronic abuse of these drugs, therefore, may interfere with normal sympathetic-parasympathetic interaction mechanism resulting in diminished neurogenic vasodilation and, possibly, normal blood flow in the brainstem.


Assuntos
Anfetaminas/farmacologia , Artéria Basilar/efeitos dos fármacos , Ketamina/farmacologia , Receptores Nicotínicos/fisiologia , Vasoconstritores/farmacologia , Animais , Artéria Basilar/metabolismo , Artéria Basilar/fisiologia , Cálcio/metabolismo , Círculo Arterial do Cérebro/efeitos dos fármacos , Círculo Arterial do Cérebro/fisiologia , Técnicas In Vitro , Ketamina/análogos & derivados , Nicotina/farmacologia , Oócitos , Ratos Sprague-Dawley , Receptores Nicotínicos/genética , Gânglio Cervical Superior/efeitos dos fármacos , Gânglio Cervical Superior/metabolismo , Gânglio Cervical Superior/fisiologia , Suínos , Vasodilatação/efeitos dos fármacos , Xenopus
19.
Mol Pharmacol ; 89(4): 476-83, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26869400

RESUMO

Tetrodotoxin-sensitive Na(+) currents have been extensively studied because they play a major role in neuronal firing and bursting. In this study, we showed that voltage-dependent Na(+) currents are regulated in a slow manner by oxotremorine (oxo-M) and angiotensin II in rat sympathetic neurons. We found that these currents can be readily inhibited through a signaling pathway mediated by G proteins and phospholipase C (PLC) ß1. This inhibition is slowly established, pertussis toxin-insensitive, partially reversed within tens of seconds after oxo-M washout, and not relieved by a strong depolarization, suggesting a voltage-insensitive mechanism of inhibition. Specificity of the M1 receptor was tested by the MT-7 toxin. Activation and inactivation curves showed no shift in the voltage dependency under the inhibition by oxo-M. This inhibition is blocked by a PLC inhibitor (U73122, 1-(6-{[(17ß)-3-Methoxyestra-1,3,5(10)-trien-17-yl]amino}hexyl)-1H-pyrrole-2,5-dione), and recovery from inhibition is prevented by wortmannin, a PI3/4 kinase inhibitor. Hence, the pathway involves Gq/11 and is mediated by a diffusible second messenger. Oxo-M inhibition is occluded by screening phosphatidylinositol 4,5-bisphosphate (PIP2)-negative charges with poly-l-lysine and prevented by intracellular dialysis with a PIP2 analog. In addition, bisindolylmaleimide I, a specific ATP-competitive protein kinase C (PKC) inhibitor, rules out that this inhibition may be mediated by this protein kinase. Furthermore, oxo-M-induced suppression of Na(+) currents remains unchanged when neurons are treated with calphostin C, a PKC inhibitor that targets the diacylglycerol-binding site of the kinase. These results support a general mechanism of Na(+) current inhibition that is widely present in excitable cells through modulation of ion channels by specific G protein-coupled receptors.


Assuntos
Angiotensina II/farmacologia , Oxotremorina/farmacologia , Bloqueadores dos Canais de Sódio/farmacologia , Canais de Sódio/fisiologia , Gânglio Cervical Superior/fisiologia , Tetrodotoxina/farmacologia , Animais , Gânglios Simpáticos/efeitos dos fármacos , Gânglios Simpáticos/fisiologia , Masculino , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Ratos , Ratos Wistar , Gânglio Cervical Superior/efeitos dos fármacos
20.
BMC Neurosci ; 16: 17, 2015 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-25881041

RESUMO

BACKGROUND: Metabotropic glutamate receptors (mGluRs) are class C G protein coupled receptors with widespread central nervous system expression. mGluR7 is a member of this family that has been implicated in numerous physiological and pathological processes, but the very low potency of mGluR7 for glutamate, its natural ligand, raise questions about the nature of its physiological role. RESULTS: Here, evidence is presented using heterologous expression in sympathetic neurons from the rat superior cervical ganglion (SCG) and modulation of the native SCG calcium currents as an assay for receptor signaling, that mGluR7 exhibits constitutive activity. This activity is detectable as basal calcium channel modulation in the absence of ligand that is not observed in untransfected cells or those transfected with other members of the mGluR family. Further, this basal channel modulation was reversibly inhibited with the mGluR7 inverse agonist MMPIP. Surprisingly, MMPIP did not strongly inhibit agonist-induced mGluR7 activation. Finally, the selective mGluR8 agonist (R,S)-PPG was also able to act as an inverse agonist at mGluR7. CONCLUSIONS: These findings introduce a novel potential physiological role for mGluR7 in the nervous system, that of a constitutively active receptor, and thereby suggest a model in which mGluR7 signaling may be impactful without the need to invoke strong receptor activation by millimolar concentrations of extracellular glutamate. Constitutive activity of mGluR7 may be eliminated or reduced by the presence of other group III mGluRs, perhaps due to heterodimer formation. In addition, both MMPIP and PPG acted as inverse agonists at mGluR7, and agonists at mGluR8.


Assuntos
Neurônios/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Animais , Cálcio/metabolismo , Células Cultivadas , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp , Piridonas/farmacologia , Ratos Wistar , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Gânglio Cervical Superior/efeitos dos fármacos , Gânglio Cervical Superior/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...